The research is supported by São Paulo Research Foundation - FAPESP and has been partially conducted at the Optics and Photonics Research Center (CEPOF), hosted by the University of São Paulo (USP) at São Carlos in São Paulo State (Brazil).
"This biophotonic technique is revolutionary, as it helps avoid the transmission of diseases during organ transplantation," said Vanderlei Bagnato, Full Professor at the University of São Paulo, Director of its São Carlos Physics Institute (IFSC-USP), and principal investigator for CEPOF, one of the Research, Innovation and Dissemination Centers (RIDCs) supported by FAPESP.
Bagnato's group partnered with researchers at the University of Toronto in Canada.
"Ten patients have so far been tested“ Cypel said. "The new technique significantly reduced transplant organ viral load in eight of these patients. The procedure all but eliminated the virus in two others."
The method described in the article ("Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion") involves ultraviolet and red light irradiation to reduce viral and bacterial loads in infected organs to prevent the transmission of diseases such as hepatitis to transplant recipients.
In addition to FAPESP, the research was also funded by the Canadian Institutes of Health Research, the Toronto General and Western Hospital Foundation, and Brazil's National Council for Scientific and Technological Development (CNPq).
According to Bagnato, the technique was initially developed to treat lungs but is being adapted for livers and kidneys.
Lungs are decontaminated before transplantation by having the blood replaced by a preservation liquid in a procedure known as perfusion that was developed in Canada by Cypel.
"Perfusion reduces the viral and bacterial loads but cannot eliminate them completely. As a result, the patient has to be treated with antibiotics and antivirals for three months after the transplant," Cypel explained.
"The biophotonic decontamination technique developed at our São Carlos laboratory consists of two specific procedures performed concurrently," said Cristina Kurachi, a professor at IFSC-USP and a participant in the project.
During perfusion, while the researchers make the liquid circulate in the lung to be transplanted, they add molecules to the lung tissue, and biophotonic decontamination takes place directly in the organ through irradiation with red light with a wavelength of 660 nanometers (nm) until photodynamic oxidation eliminates the microorganisms in the tissue.
At the same time, the viral load is flushed away by the circulating liquid, which is continuously decontaminated by ultraviolet irradiation with a wavelength of 254 nm.
"The ultraviolet irradiation directly destroys microorganisms by breaking down the molecules present in bacteria and viruses. The bacteria are killed, and the viruses are completely inactivated. Red light irradiation decontaminates indirectly via photosensitization," Kurachi said.
This biophotonic therapy involves the introduction of a photosensitizing drug into the perfusion liquid. Activation of the drug requires oxygen molecules (present in viruses) and red light irradiation at a specific wavelength (660 nm). When the photosensitizing drug is bathed in this red light, its molecules absorb energy, which is transferred to the oxygen molecules in the virus, making them highly oxidized. This causes irreversible damage to the membranes and genetic material of several viruses, including hepatitis C virus and HIV-1.
"The perfusion solution is special and very expensive," Bagnato said. "It's made in such a way as to preserve the organ. Because of the cost, as little as possible is used in the procedure. Thanks to the technique and equipment we've developed, a liter of the perfusate can be flushed through the organ hundreds of times to remove the contaminants completely."
MEDICA-tradefair.com; Source: São Paulo Research Foundation