"Everyone is talking about how blockchain is going to revolutionize many of the data challenges in medicine, and here is one use that finally might make sense," said Atul Butte, MD, PhD, who is the Priscilla Chan and Mark Zuckerberg Distinguished Professor and director of the Bakar Computational Health Sciences Institute at UCSF. "We think it could someday be useful for pharma companies running clinical trials."
The research was published in Nature Communications.
Blockchain technology utilizes an old computer science technique known as hashing, which creates a unique digital signature for each so-called block of data. The hashes accumulate sequentially, as new data is entered or changed, with each block depending on the last. The resulting "blockchain" creates an audit trail for regulators that is easy to decipher and validate, even without looking at the actual data.
Daniel Wong, a PhD candidate in Biological and Medical Informatics at UCSF, built the system to operate through a web portal (there were numerous providers of healthcare portals at MEDICA 2018), so that each time new data is entered on a given trial participant, the sender, receiver, timestamp, and file attachment containing the data, along with the hash of the previous block of data pertaining to that patient, is recorded onto a new block, with its own distinct signature.
Unlike the decentralized nature of most blockchain applications, this clinical trial prototype depends on having a regulator with centralized authority, such as the U.S. Food and Drug Administration, to operate the web portal, register all parties, and keep a ledger of the blockchain's hashes.
Data, including adverse events, would be reported to the regulatory agency in real time, which may provide a boost to the safety and efficiency of clinical trials. While the prototype makes allowances for data entry or other errors to be corrected, new data can only be appended to the existing chain, without erasing what was there before.
"It makes it really obvious when someone's changing something," Wong said. "You can see who put their hands on it, who made it, who changed it, and who received it."
Wong tested the system with a small subset of data from a real, previously run phase II trial included in ImmPort, a repository of open clinical trial data funded by the National Institutes of Allergy and Infectious Diseases (NIAID) that is managed by Butte's lab and collaborators.
After entering the original data, he logged in as the trial sponsor and tried to erase adverse events that had been reported for two patients in their case report forms. Instead of deleting those reports, however, the system appended his changes to the original data, making it clear who had tried to corrupt the forms, when it was done, and what had been changed.
MEDICA-tradefair.com; University of California - San Francisco